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Direct numerical simulation has been performed to explore the turbulence near a
freely deformable interface in a countercurrent air–water flow, at a shear Reynolds
number Re� = 171. The deformations of the interface fall in the range of capillary
waves of waveslope ak = 0.01, and very small phase speed-to-friction velocity ratio,
c/u�. The results for the gas side are compared to open-channel flow data at the
same shear Reynolds number, placing emphasis upon the influence of the waves
in the interfacial viscosity-affected region, and away from it in the outer core flow.
Comparison shows a similarity in the distribution of the turbulence intensities near
the interface, confirming that for the range of flow conditions considered, the lighter
phase perceives the interface like a flexible solid surface, at least in the limit of
non-breaking waves. Overall, in a time-averaged sense, the interfacial motion affects
the turbulence in the near-interface region; the most pertinent effect is a general
dampening of the turbulent fluctuating field which, in turn, leads to a reduction in
the interfacial dissipation. Furthermore, the turbulence is found to be less anisotropic
at the interface than at the wall. This is confirmed by the analysis of the pressure–
rate-of-strain tensor, where the effect of interfacial motion is shown to decrease
the pressure strain correlation in the direction normal to the interface and in the
spanwise direction. The analysis of the turbulent kinetic energy and Reynolds stress
budgets reveals that the interface deformations mainly affect the so-called boundary
term involving the redistribution of energy, i.e. by the action of pressure, turbulent
fluctuations and molecular viscosity, and the dissipation terms, leaving the production
terms almost unchanged. The non-zero value of the turbulent kinetic energy at the
interface, together with the reduced dissipation, implies that the turbulent activity
persists near the interface and contributes to accelerating the turbulent transfer
mechanisms. Away from the interface, the decomposition of the fluctuating velocity
gradient tensor demonstrates that the fluctuating rate-of-strain and rate-of-rotation
at the interface influence the flow throughout the boundary layer more vigorously.
The study also reveals the streaky structure over the deformable interface to be less
organized than over a rigid wall. However, the elongation of the streaks does not
seem to be much affected by the interfacial motion. A simple qualitative analysis
of the quasi–streamwise vortices using different eduction techniques shows that the
interfacial turbulent structures do not change with a change of boundary conditions.
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1. Introduction
The fundamental mechanisms controlling heat and mass transfer across gas–

liquid interfaces play a central role in the modelling of contacting multi-component
systems. Whether the process is purely diffusive, such as soluble gas absorption, or
involving condensation-induced suction, the exchange process is generally dominated
by interfacial shear and/or turbulence. From a practical viewpoint, the subject
is equally important to nuclear and chemical engineering, and to environmental
problems. For example, a good understanding of interfacial exchange processes is
essential for the thermal hydraulics of the class of nuclear power plants resorting
to passive emergency cooling systems. Of primary importance in this case is to
understand the behaviour of the steam–air mixtures vented into the containment
pools. On a much larger scale, more specifically in marine climatology, quantifying
the rate of mass transfer through absorption of carbon dioxide by the oceans is
important, as well as the impact of aerosol production and transport from surface
wave breaking (Melville 1996). The interest in this field is to relate the transfer
mechanisms properly to the imposed interfacial shear, and the way this shear scales
with the turbulence structure.

Progress towards a sufficient understanding of the various types of gas–liquid
exchanges has been hindered by obvious difficulties with measurements and computer
simulations. Turbulence near deformable interfaces separating immiscible phases
has received less attention than for wall-bounded flows. Recent developments in
measuring technology contributed to advancing knowledge in this field (Jaehne et al.
1987; Rashidi & Banerjee 1990; Komori, Nagaosa & Murakami 1993a; Kumar,
Gupta & Banerjee 1998), but there are still many non-clarified issues regarding
the way molecular and turbulent transport processes interact with the transfer
mechanisms. This is particularly crucial in the non-wall-bounded flow context, where
deformable interfaces are synonymous with surface velocity fluctuations and surface
wave generation.

Relating the mass transfer process to the interfacial turbulence structure has
been approached mainly via two classes of model, i.e. the surface renewal theory
(Higbie 1935), and the eddy diffusivity concept. For instance, experimental evidence
for correlations between the mass transfer rate and the surface renewal motion was
demonstrated in most of the experiments dealing with wind-driven turbulence at
air–water wavy interfaces (Jaehne et al. 1984; Coantic 1986; Komori et al. 1993a).
The presence of interfacial waves was also found to further enhance the exchange
processes (Jaehne et al. 1987), because part of the energy gained by the waves through
the action of the wind is transferred to near-interface turbulence.

The advancement in computer technology and numerical methods has made it
possible to investigate flows involving non-flat boundaries using direct numerical
simulation (DNS) and large-eddy simulation (LES). For example, Maass & Schumann
(1994) resorted to finite-difference DNS to investigate the flow structure over
stationary high amplitude-to-wavelength ratio (a/λ = 0.05) sinusoidal waves, and
observed large separation regions downstream of the wave crests. De Angelis,
Lombardi & Banerjee (1997) employed pseudo-spectral DNS for the flow over a wavy
wall with a/λ = 0.025 and 0.05, and reported significant effects of the wavy boundary
on the turbulence statistics and the mean flow. Cherukat et al. (1998), performing
spectral-element DNS of the flow over stationary sinusoidal waves with a/λ = 0.05,
confirmed the modification of the mean flow only; the local turbulence appeared
to be less influenced when rescaled with the increased (effective) friction velocity.
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With their LES study of flow over a wavy wall up to a/λ = 0.1, Henn & Sykes
(1999) were able to reproduce most of the flow features observed in moderate high-
Re experiments. DNS studies dealing with non-stationary sinusoidal waves are very
rare, except for the work of Sullivan, McWilliams & Moeng (2000). Their high-
amplitude waves (ak = 0.1) were found to significantly influence the mean flow and
turbulence characteristics. Moreover, they observed that in comparison to stationary
waves, slow moving waves increase the form drag, whereas fast moving waves
decrease it.

DNS studies devoted to the analysis of turbulence at interfaces, involving two-
phase flows, have been relatively few. Some early important work was presented
with regard to the turbulence structure near free surfaces with and without shear
(Lam & Banerjee 1992; Komori et al. 1993b; Lombardi, De Angelis & Banerjee
1996). Because of its relative simplicity, stratified gas–liquid flow has been the best-
suited configuration to investigate the underlying physics at the interface. The DNS-
based study of Lombardi et al. (1996) centred around a flat interface configuration,
where gas and liquid were coupled through continuity of velocity and stress jump
conditions at the interface. The authors found that turbulence characteristics on
the gas side are similar to those at the wall. This led them to conclude that
in some two phase flow problems, depending on the density ratio between the
phases, the lighter phase might look at the interface like a solid surface. De
Angelis (1998) extended the work of Lombardi et al. (1996) to non-flat interfaces
by considering stratified flow with a freely deformable interface in the capillary wave
regime.

Following the work of Lombardi et al. (1996) and De Angelis (1998), the present
investigation aims at analysing in great detail the interfacial sublayer, with emphasis
on the gas side because of the presumed analogy between near-wall and near-interface
turbulence. The issue is approached by means of a global analysis of the energy
budgets and the interfacial turbulence structure obtained from a rigorous DNS of a
sheared air–water flow with a freely deformable interface, within the capillary-wave
regime. One objective here is to analyse turbulent flow on the gas side and discuss
the wave-induced mechanisms influencing the flow. In fact, the major effect expected
from interface deformation in the presence of shear is the extra transverse motion
superimposed on the mean flow, and its associated energy, in the direction normal to
the interface. The final objective is to exploit the outcoming data to develop suitable
near-interface turbulence models useful for practical applications, for example by
incorporating them into interface tracking methods, where the topology and dynamics
of the interface are directly computed. In contrast to the two-fluid formalism, direct
interface tracking algorithms may lead to situations where the interface is perceived
like a solid surface to one of the phases, a conjecture to which the employed eddy-
diffusivity type of model needs to conform.

The paper is structured as follows: the problem under consideration and the
numerical procedure are described in § 2. The characteristics of the waves are discussed
in § 3. The flow statistics are presented in § 4, together with the data obtained by
repeating the open-channel flow numerical experiment of Lam & Banerjee (1992). In
§ 5, the budgets for the turbulent kinetic energy and for the Reynolds stresses are
discussed, and the main differences relative to open-channel flow data are highlighted.
The mechanisms behind turbulence interaction with the deformable interface are
treated in § 6. The flow structure is qualitatively analysed in § 7 by use of three
different eduction techniques. Finally, conclusions are drawn in § 8.
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Figure 1. Sketch of the simulated problem. The elevation of the waves has been amplified
by a factor 5.

2. Numerical method
The configuration of the two-phase flow investigated here is sketched in figure 1,

where the flow in each subdomain is driven by a constant pressure gradient. The
reference quantities used throughout the paper for normalization are the effective
shear velocity u�, defined by u� =

√
τint/ρ, where τint represents the shear stress at the

interface, the half-depth of each computational domain h, and the kinematic viscosity
ν. It is important to note that at the beginning of the simulation, when the interface
is still flat, the interfacial shear balances exactly the imposed mean pressure gradient,
so that u� corresponds to the shear velocity uτ . As the interfacial waves start to
develop, part of the energy is transferred into form drag leading to a reduction of the
interfacial shear, i.e. u� < uτ (see § 6.1). The shear-based Reynolds number, defined
by Re� = u�2h/ν, with u� taken at the initial stage of the simulation, is 171 in both
phases. Moreover, the non-dimensional time is defined by t+ = t ν/u2

� in wall units,
or by tls = t U0/h in large-scale units, where U0 is the mean streamwise velocity. With
these reference quantities (u�, ν/u2

�, h), the non-dimensional Navier–Stokes equations
for the incompressible isothermal Newtonian fluids flowing in the two subdomains are

∇ · ũ = 0, (2.1)

∂ ũ
∂t

+ ũ · ∇ũ = −∇p̃ +
1

Re�

∇2

ũ, (2.2)

where ũ is the velocity vector, made non-dimensional by the reference velocity u�,
and p̃ is the dynamic pressure normalized by ρu2

�.
In the absence of mass transfer, the gas and liquid phases are explicitly coupled at

the interface by the continuity of velocities and shear stresses. The interfacial jump
conditions, see for example Delhaye (1974), can be expressed, in non-dimensional
form as follows

1

Re�

((τL − τG) · n) · n + p̃G − p̃L +
1

We
∇ · n − 1

Fr
f = 0,

((τL − τG) · n) · t i = 0, i = 1, 2,

ũG =
1

R ũL,




(2.3)

where the subscripts L and G stand for liquid and gas respectively, τ is the viscous
stress tensor, f measures the vertical displacement of the interface with respect to the
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mid-plane, n and t i are the normal and the two tangential unit vectors, respectively,
and R =

√
ρL/ρG is the parameter measuring the density ratio. The Weber (We) and

Froude (Fr) numbers are defined as

We =
ρL h u2

�L

σ
, Fr =

u2
�L

ρL

g h (ρL − ρG)
, (2.4)

where σ stands for the surface tension coefficient. At the outer boundaries, free-slip
boundary conditions are employed in order to avoid turbulence generation other than
in the interface region. Periodic boundary conditions are applied in the streamwise
and spanwise directions.

The interface motion is computed by solving a pure advection equation for the
vertical elevation of the interface, denoted here by f (x, t):

∂f

∂t
+ ũ · ∇f = 0. (2.5)

In contrast to the interface tracking method, this approach, known as the boundary
fitting method, cannot be extended to strong topological changes of the interface that
might lead to the inclusion of one phase into the other, such as fragmentation and
wave breaking (Lakehal, Meier & Fulgosi 2002). For this reason, parameters such
as the Weber and Froude numbers were carefully selected. On the basis of scaling
arguments, these non-dimensional numbers were set equal to We = 4.8 × 10−3 and
Fr = 8.7 × 10−5 in order to limit the elevation amplitude and steepness to the range
of capillary waves.

At each time step, the distorted physical domain was mapped onto a
rectangular parallelepiped on which the Navier–Stokes equations were solved using a
pseudospectral technique. Details of the numerical method and the mapping procedure
can be found in De Angelis et al. (1997). The dimensions of the computational domain
are 4πh × 2πh × 2h, with h = 0.02 m. The computational domain for each phase
was 1074 × 537 × 171 wall units in the streamwise, spanwise and normal directions,
respectively, with a resolution of 64 × 64 × 65, which had been proved satisfactory by
Fulgosi et al. (2001).

The density ratio between the two phases was such that R = 29.9, corresponding to
air–water flows at atmospheric pressure and at roughly 320 K. This parameter may
be interpreted as an indicator of the degree of dynamic coupling between the phases.
In fact, by virtue of the non-dimensional velocity continuity condition

ũG =
1

R ũL, (2.6)

R can be thought of as a measure indicating the interphase momentum transfer.
For example, the limiting case of R → ∞ reduces to a wall-flow-like conjecture, in
which case the interphase coupling is minimum. In contrast, the other limiting case
of R → 1 reflects a ‘uniform medium’ situation.

3. Characteristics of the waves
The topology of the waves developing over a deformable free surface manifests

itself in various forms depending on the intensity of the interfacial shear stress caused
by the nature of the underlying turbulence. The action of this shear is balanced by two
stabilizing factors: one due to gravity and one caused by surface tension (Brocchini
& Peregrine 2001).
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Figure 2. Time spectra of the wave amplitude. (a) Linear scale, (b) log–log scale.

In the air–water wave literature, it is customary to characterize the wave motion
using the second moments of the joint probability density of the surface displacement
P (f (x1), f (x2)). In particular, the covariance of the instantaneous non-dimensional
surface displacement

Z(r) = f (x, t0)f (x + r, t0), (3.1)

and the covariance of the non-dimensional surface displacement at a fixed location
as a function of time

Z(t) = f (x, t0)f (x, t0 + t). (3.2)

The other useful wave-characterizing quantity, defined in terms of the covariance of
the surface displacement (3.1), is the two-dimensional wave spectrum

Ψ (k) = (2π)−2

∫
Z(r) exp (−ik · r) dr. (3.3)

It is important to note that, since the wavenumber k is here defined in the dimensional
space, Ψ has the dimension of [L2], leading to the following definition of the saturation
spectrum of the wave displacement

B(k) = |k|2 Ψ (k). (3.4)

See Phillips (1977, 1985) for further exhaustive theoretical details.
The maximum wave amplitude observed in the present simulation was about

0.25 mm, and the maximum waveslope ak (amplitude a times wavenumber k) never
exceeded ak = 0.01. The time spectra of the non-dimensional wave elevation delivered
by the DNS is shown in figure 2. Figure 2(a) is presented in linear scale whereas
figure 2(b) is in a log–log scale. The spectrum was obtained over a time interval
of ∆tls = 350 large-scale non-dimensional time units. The peak value is reached
at tls = 20, in agreement with the measurements of McCready & Hanratty (1985),
and indicates the frequency of the dominating wave. The equilibrium range is well
represented in the time spectrum, covering a range of events larger than that of the
peak. At the high frequencies, the straight line portion in figure 2(b) indicates that
the small-scale dynamical effects induced by the waves cannot be expected to become
important since they cannot grow in time. The estimation of the peak frequency
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Figure 3. (a) Covariance at a fixed point on the interface (autocorrelation) as a function of the
non-dimensional time. (b) Saturation spectra at the beginning and the end of the simulation.

has direct implications in modelling the mass transfer coefficient, as postulated by
McCready & Hanratty (1985).

The covariance of the surface displacement as a function of time and the saturation
spectra of the wave displacement are shown in figures 3(a) and 3(b), respectively. The
covariance shows the waves to reach a steady state over the time interval considered
in the simulation. In fact, the growth of the waves under the influence of the wind
shear cannot continue indefinitely because it is limited by several dissipation effects.
In spectral terms, this means that in the wave spectrum there is an upper limit of the
spectral density imposed by these dissipation phenomena. The range of wavenumbers
over which this occurs is called the saturation range (Phillips 1977). The saturation
spectra are plotted in figure 3(b) at two different times during the computation: at
the beginning (tls = 0) and at the end (tls = 350) of the time interval over which the
statistics were performed. The results clearly show that the waves have not changed
their properties in the course of the 350 large-scale time units.

4. Analysis of the turbulent field
As is customary in DNS, statistical analysis of the data was performed by averaging

the collected flow database over the two homogeneous directions (i.e. (x, y)-plane
average) and in time. For the type of flow considered here, this procedure can be
reliable only if the collected database covers a sufficiently large time interval over
which the wave field does not change its properties. In this case, the impact of
the interfacial motion can be inferred in an average sense. This applies to the flow
over the freely deformable interface since the characteristics of the waves have been
shown in § 3 to remain invariant in time. After statistically stationary conditions were
reached, the flow database was collected over 350 large-scale time units (19 500 time
steps) with a frequency of sampling of ∆tls = 0.04, which corresponds roughly to
twice the large-eddy turnover time of the flow. The stratified flow data have then
been compared to the open-channel flow results obtained by repeating the numerical
experiment of Lam & Banerjee (1992). The flow database in this case was collected
over 240 large-scale time units (13 500 time steps).
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Figure 4. Profiles of the mean streamwise velocity.

Because the wave dynamics induces extra motion in the vertical direction of the
flow, the velocity field may be thought of as superposition of mean coherent and
non-coherent (turbulent) contributions, i.e.

ũi = Ui + uw
i + ui, (4.1)

where Ui is the mean velocity (i.e. averaged over time and the two horizontal
directions), uw

i is the flow component induced by the orbital motion, and ui is
the superimposed turbulent fluctuation. This suggests that, in order to analyse the
non-coherent turbulent fluctuating field in stratified flow, it is necessary to separate
it from the coherent field, uw

i . Also, the wave component is removed in the vertical
direction only because the other two components (in the plane tangential to the
interface) are negligible, i.e. of the order 10−4. This has been achieved by removing
the grid velocity u

g

3 from the vertical velocity component, i.e. uw
3 = u

g

3 , leading to a
zero value of ũ3 at the interface.

Most of the following results are presented using a logarithmic scale for the abscissa
z+ = u�z/ν in order to appreciate better the changes very close to the interface.

4.1. Velocity field

Figure 4 shows the profiles of the mean streamwise velocity for flow over the
deformable interface (referred to as FDI) and for the open channel (OCH). DNS
results obtained by Hu & Sandham (2001) for closed-channel flow at Reτ = 180
are also included for comparison. The profiles are practically the same starting from
z+ = 10, but below, while both the wall-bounded flows converge towards zero at the
wall, the velocity in the FDI case has a finite value at the interface, corresponding
to 2% of the maximum velocity. The root-mean-square (r.m.s) profiles of the velocity
fluctuations are presented in figure 5. The behaviour is almost identical, but again,
because of different boundary conditions, the r.m.s. values of u and v in the FDI
case do not start from the same value at the interface/wall. At this stage, the results
presented in this section suggest that there is an ‘apparent similarity’ between wall-
turbulence and near-interfacial turbulence. In reality, although small in magnitude,
differences do exist and manifest themselves in very subtle ways.

The effect of filtering the wave-induced motion from the vertical velocity component
has also been investigated, and the results are reported in figure 6, comparing the
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Figure 5. Root-mean-square profiles of the three velocity components. Lines and symbols are
used to identify FDI and OCH, respectively. and ©, streamwise velocity; −−− and �,
spanwise component; −·− and �, normal component.
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Figure 6. Profiles of the r.m.s. of fluctuating vertical velocity near the interface/wall.
FDI-1: filtered data (w̃ − ww); FDI-2: unfiltered data (w̃).

r.m.s. of w̃ − ww (filtered) to the r.m.s. of w̃ (unfiltered), referred to as FDI-1 and
FDI-2, respectively. The comparison highlights the influence of the wave dynamics
on the velocity fluctuating field, although, compared to the maximum value, the r.m.s.
of w̃ is small.

Another persuasive indication that the interfacial deformation acts on the velocity
field can be provided by examining the variation of the components of the fluctuating
rate-of-strain tensor

sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (4.2)

The analysis, discussed in the context of figure 7, indicates that the most affected
components are the off-diagonal ones, i.e. s12, s13 and s23. The lower values of s13

and s23 in the FDI case provide evidence that the impact of the interface dynamics
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to identify FDI and OCH, respectively. and ©, s12; −·− and �, s13; −−− and �, s23.
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on the turbulence at the interface is to reduce the rate-of-deformation of the fluid in
the near-interface region z+ < 12. The implications of this result are better measured
by looking at the off-diagonal components of the viscous dissipation tensor

εij = 2ν sikskj (4.3)

plotted in figure 8, together with ε = εii/2, the dissipation of the turbulent kinetic
energy. The analysis shows that the off-diagonal components of εij are weakened in
the FDI case, in particular ε12 (because of the significant difference in s23); this applies
also to ε. Thus, it can be concluded that the effect of the interfacial deformations on
the near-interfacial turbulence leads to general dampening of the turbulent fluctuating
field.
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4.2. Vorticity field

The aim of this section is to evaluate the influence of the interfacial deformations
on the flow field away from the interface. Emphasis will be placed upon the
modification of the quasi-streamwise vortices. Although the current knowledge on
wall-flow structures prompted by DNS is richer than ever, questions regarding certain
aspects of the energy transfer and regeneration mechanisms near the wall are still
open. The lack of consensus is even more acute as to which of the streamwise
velocity streaks or quasi-streamwise vortices are directly implicated in the turbulence
self-sustaining mechanisms (Jimenez & Pinelli 1999; Schoppa & Hussain 2002). This
latter mechanism, in particular, has long been associated with the dynamics of the
quasi-streamwise vortices oriented in the flow direction (Banerjee 1992). Pairs of these
quasi-streamwise vortices neighbouring the wall are known to be directly linked to
the formation of the streaky structure of the velocity field through two types of
event: ejections and sweeps. These two flow events are also known to result from the
interaction between the quasi-streamwise vortices (see figure 9). The streaky structure
pattern consists of the alternation between regions of low- and high-speed fluid;
high-speed regions are associated with low-shear stress regions, and vice versa.

Some preliminary information about the phenomenon of generation of quasi-
streamwise vortices has been inferred from the analysis of the fluctuating vorticity
field. For instance, it is known that the main contributor to changes of ωx is ωz(dU/dz),
which can be interpreted as the tilting of a vortex with component ωz in the streamwise
direction. Figure 10 shows the variation of the r.m.s. of the three components of the
vorticity vector for the FDI and OCH cases. Since dU/dz is almost equal in both
configurations, and no substantial differences occur in the variation of ωz, it can be
argued that the orientation of the quasi-streamwise vortices is not affected by the
interfacial motion, at least in an average sense. Further, the influence of the interfacial
deformation on the core flow can also be discussed by examining the behaviour of
the fluctuating velocity gradient tensor, decomposed as

∂ui

∂xj

= sij + rij , (4.4)

where sij is the fluctuating rate-of-strain tensor (symmetric) defined in (4.2), and rij

is the fluctuating rate-of-rotation tensor (skew-symmetric), defined as

rij =
1

2

(
∂ui

∂xj

− ∂uj

∂xi

)
. (4.5)
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Figure 10. Root-mean-square profiles of components of the vorticity vector ω. Lines and
symbols are used to identify FDI and OCH, respectively. and ©, ωx; −−− and �, ωy;
−·− and �, ωz.

Of particular interest in evaluating the rate-of-deformation/rotation of the fluid, is
the second invariant (Q) of the velocity gradient tensor, defined as

Q = − 1
2
[tr(r2) + tr(s2)] = 1

2
(rij rij − sij sij ). (4.6)

Since Q vanishes at the wall, it cannot be directly used in the present context to
estimate the influence on the fluid deformation/strain of the interfacial dynamics.
However, useful information can be inferred by analysing separate contributions
of rij rij and sij sij in terms of autocorrelation functions between their values at
the interface/wall and in the bulk region. The autocorrelation functions have been
defined as

Corr(rij ) =
〈rij rij 〉(0) 〈rij rij 〉(z)

〈rij rij 〉rms(0) 〈rij rij 〉rms(z)
, (4.7)

Corr(sij ) =
〈sij sij 〉(0) 〈sij sij 〉(z)

〈sij sij 〉rms(0) 〈sij sij 〉rms(z)
, (4.8)

where 〈rij rij 〉(0) stands for the value of the space-averaged (x–y) component at
the interface/wall, and 〈rij rij 〉(z) for the values along the direction normal to the
interface/wall; the same applies to 〈sij sij 〉. Figure 11, comparing the autocorrelation
functions Corr(rij ) and Corr(sij ), shows that these are both stronger in the FDI flow
configuration than in OCH. A close inspection of the plot reveals that, for the FDI
case, the location where the rotation overcomes the strain is 10 wall units earlier than
for OCH. This result reflects the fact that the interface affects the evolution of the
flow field throughout the entire boundary layer, in contrast to a rigid wall.

4.3. Pressure field

In the vicinity of the wall, pressure fluctuations, p, are a direct measure of the
surface excitation force, and are closely linked to flow unsteadiness. The generation
of pressure fluctuations in a turbulent boundary layer is coupled to the dynamics of
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Figure 12. Profiles of the r.m.s. pressure fluctuation, p. Lines and symbols are used to
identify FDI and OCH, respectively.

the instantaneous velocity field throughout the entire layer. This coupling is expressed
in terms of the following Poisson equation

1

ρ
∇2p = −2

∂Ui

∂xj

∂uj

∂xi

− ∂2

∂xi∂xj

(uiuj − uiuj ), (4.9)

which embodies a dependency on the interaction between the fluctuating velocity
field and the mean shear as well as on the nonlinear interaction of the velocity
fluctuations with themselves. Moreover, since the instantaneous gradients of the
pressure fluctuations are equal to the flux of vorticity from the wall, the wall-pressure
fluctuations are intimately related to the vorticity fluctuations and the organization of
the turbulent structures within the boundary layer (Robinson 1991). Figure 12 shows
the variations in the fluctuating pressure in the direction normal to the interface/wall.
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Figure 13. Terms in the budget for the TKE in wall units. Lines and symbols are used to
identify FDI and OCH, respectively. and ©, dissipation; −−− and +, production; · · · and
×, pressure diffusion; −·− and �, turbulent diffusion; − ·· − and ∗, viscous diffusion.

It is readily apparent that the freely deformable interface is associated with a higher
level of near-interface pressure fluctuations, which is maintained across the entire
viscous sublayer and above (z+ ≈ 20). In the OCH case, the r.m.s. of the pressure
at the wall is around 1.7, which agrees fairly well with the channel flow data of
Kim, Moin & Moser (1987). In the FDI case, the interfacial r.m.s. pressure value
is around 2.3, which can be interpreted as resulting from the formation of local
pressure gradients promoted by the alternation of ‘hills’ and ‘valleys’ developing over
the deformable interface. In § 4.1, it has been shown that the impact of the interfacial
motion on the velocity field results in a reduction in the near-interfacial dissipation,
via a reduction in the deformations induced by the fluctuating strain, sij ; i.e. the
fluctuating velocity gradients in the direction normal to the interface are reduced
compared to those at the wall. The larger values of the r.m.s. of pressure in the near-
interface region are then in accord with the observed dampening of the turbulent
fluctuating field; in fact, this is required by conservation of the pressure–rate-of-strain
term in equation (5.3).

5. Energy budget equations
5.1. Turbulent kinetic energy budget

The transport equations for the turbulent kinetic energy (TKE), k = (u2 + v2 +w2)/2,
can be derived from the Navier–Stokes equations. For incompressible turbulent flow,
the transport equation is given by

Dk

Dt
= − uiuj

∂Ui

∂xj︸ ︷︷ ︸
Production

− 1

ρ

∂

∂xi

pui︸ ︷︷ ︸
Press. Diff.

− 1

2

∂

∂xj

uiuiuj︸ ︷︷ ︸
Turb. Transp.

+
1

2
ν

∂2

∂x2
j

uiui︸ ︷︷ ︸
Visc. Diff.

− ν
∂ui

∂xj

∂ui

∂xj︸ ︷︷ ︸
Dissipation

, (5.1)

where D/Dt is the substantial derivative. The analysis below follows the approach
used by Mansour, Kim & Moin (1988). Figure 13 compares the terms on the right-
hand side of equation (5.1) for FDI and OCH cases. The only significant difference
can be observed close to the interface, where both viscous diffusion and dissipation
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rates are smaller in the FDI case. This is due to the previously observed dampening
effect of the turbulent field caused by interfacial motion. It is interesting to note
that even in the presence of a deformable interface the dissipation rate close to the
interface is balanced entirely by the viscous diffusion, exactly as in the case of a rigid
wall.

5.2. Reynolds stress budget

The transport equations for the Reynolds stresses are also derived from the Navier–
Stokes equations. For incompressible turbulent flow the generic transport equation is
given by

D

Dt
uiuj = −

(
uiuk

∂Uj

∂xk

+ ujuk

∂Ui

∂xk

)
︸ ︷︷ ︸

Production

− 1

ρ

(
ui

∂p

∂xj

+ uj

∂p

∂xi

)
︸ ︷︷ ︸

Press. Diff.

− ∂

∂xk

uiujuk︸ ︷︷ ︸
Turb. Transp.

+ ν
∂2

∂x2
k

uiuj︸ ︷︷ ︸
Visc. Diff.

− 2ν
∂ui

∂xk

∂uj

∂xk︸ ︷︷ ︸
Dissipation

. (5.2)

It is important to note that the pressure diffusion term provides both a source of
energy and a mechanism to redistribute it. This term, also called the velocity–pressure-
gradient tensor and denoted by Πij , can be decomposed into a redistributive part and
a transport part as follows

Πij =
p

ρ

(
∂ui

∂xj

+
∂uj

∂xi

)
− ∂

∂xk

[
p

ρ
(ui δjk + uj δik)

]
= Rij − ∂

∂xk

Tijk, (5.3)

where δij indicates the Kronecker delta. Rij , the pressure-rate-of-strain tensor, serves
to redistribute energy among the Reynolds stresses promoting isotropy of turbulence.
Tijk , the pressure–transport term, constitutes the source of kinetic energy due to
pressure transport. As discussed in § 4.3, owing to the homogeneity of the flow in
the streamwise and spanwise directions, the transport equation for uv reduces to
Π12 − ε12 = 0. The reduction of ε12 near the interface (see figure 8) is therefore
counterbalanced by an increase in Π12 through the pressure.

By virtue of continuity, the trace of Rij is zero, and consequently this term vanishes
in the transport equation of the turbulent kinetic energy (5.1). Each term of the trace
of Rij is used to define the pressure–strain correlation

PSi =
1

ρ
p

∂ui

∂xi

, i = 1, 2, 3. (5.4)

A positive value of PSi implies a transfer of energy into component i from the other
components, and vice versa.

Figure 14 shows the profiles of the pressure–strain correlation. In both OCH and
FDI cases, the streamwise component, PS1, transfers energy into the spanwise (PS2)
and the normal (PS3) components. What is remarkable is that this effect is less
pronounced for FDI, meaning that the streamwise component loses less energy than
in the channel flow. Hence, the deformable boundary reduces the interface-normal
component less than the solid boundary does. The reduced values of PS2 and PS3

occur as R22 and R33 are smaller in the flow over a deformable interface than near
the wall. This leads to the conclusion that near-interface turbulence is more isotropic
than near-wall turbulence.
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Figure 14. Profiles of the pressure–strain correlation. Lines and symbols are used to identify
FDI and OCH, respectively. and ©, streamwise direction; −−− and +, spanwise direction;
−·− and ∗, vertical direction.

The intercomponent energy transfer near a boundary (described by the pressure–
strain correlation) can be further explained by considering the presence of two
types of effect when the surface is approached: a viscous effect that reduces
the turbulence intensities, and a wall-blocking effect that amplifies the tangential
turbulence intensities. The latter event is referred to as splat; a local region of
stagnation flow resulting from impingement on a solid boundary (Perot & Moin 1995).
As it cannot penetrate the boundary, the fluid turns and moves parallel to it, yielding a
transfer of energy from the normal velocity component to the tangential components
and an enhancement of tangential turbulence. The proximity of a vortical structure
close to the boundary produces vorticity of opposite sign, which can be ejected away
by the primary vortex. This scenario, known as antisplats, can be regarded as the
counterpart of the splat event which explains the energy redistribution between PSi

components. This clearly shows that interfacial motion weakens the role of splats.
A comparison between the budgets of the normal stress component, uu, is presented

in figure 15. In the vicinity of the interface (z+ < 10), turbulent transport, viscous
diffusion, and dissipation are smaller in absolute value in FDI than in OCH, while
production and pressure diffusion remain unchanged. Close to the interface, the
dissipation is entirely balanced by the viscous diffusion. The budgets for vv are
presented in figure 16. Again, viscous diffusion, pressure diffusion, and dissipation
are smaller in absolute value in FDI than in OCH, whereas turbulent transport
remains unchanged. In the spanwise direction there is no production, and close to the
interface the dissipation is balanced by viscous diffusion, whereas up to z+ > 10 the
dissipation is entirely balanced by the pressure diffusion term. Figure 17 compares
the budgets for the interface/wall normal component ww. In the viscous sublayer no
substantial differences can be seen, indicating that the interfacial motion very close to
the interface does not affect the balance. However, in the buffer region, 20 < z+ < 40,
pressure diffusion, turbulent transport, and dissipation (the former is not very evident
in a logarithmic plot) are more pronounced in FDI than in the OCH case. In the
normal direction there is no production either, and the only important source of
energy is the pressure diffusion term, which is balanced by turbulent transport and
dissipation. A comparison of budgets for the shear stress uw, plotted in figure 18,
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Figure 15. Terms in the budget for uu in wall units. Lines and symbols are used to identify
FDI and OCH, respectively. and �, production; −−− and ©, dissipation; −··− and �,
viscous diffusion; · · · and ∗, pressure diffusion; −·− and +, turbulent diffusion.
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Figure 16. Terms in the budget for vv in wall units. Lines and symbols are used to identify
FDI and OCH, respectively. and ∗, dissipation; −··− and +, pressure diffusion; −−− and
�, turbulent diffusion; −·− and ©, viscous diffusion.

indicates that in both cases the production is balanced by the pressure diffusion
term. Viscous diffusion, dissipation, and production remain unchanged in the viscous
sublayer, whereas pressure diffusion and turbulent transport are slightly smaller at
the deformable interface.

In summary, it can be concluded that the interfacial motion affects the flow in
the viscous layer through a reduction of the viscous mechanisms (i.e. dissipation and
viscous diffusion) and a reduction of the flux of Reynolds stresses (i.e. turbulent
transport). The production mechanisms including pressure diffusion, however, remain
unchanged. This confirms the role of the interface deformation in reducing most of
the gradients of turbulent correlations (i.e. the terms requiring modelling in equation
(5.2)) as the interface is approached.
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Figure 17. Terms in the budget for ww in wall units. Lines and symbols are used to identify
FDI and OCH, respectively. and ∗, dissipation; −··− and +, pressure diffusion; −−− and
�, turbulent diffusion; −·− and ©, viscous diffusion.
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Figure 18. Terms in the budget for uw in wall units. Lines and symbols are used to identify
FDI and OCH, respectively. and �, production; −−− and ©, dissipation; −··− and �,
viscous diffusion; · · · and ∗, pressure diffusion; −·− and +, turbulent diffusion.

6. Turbulence/interface interaction mechanisms
6.1. Drag at the sheared deformable interface

Of fundamental interest in turbulent two-phase flow research is a better understanding
of the interaction between turbulence and the neighbouring deformable interface.
More precisely, identifying the various mechanisms through which interfaces affect
turbulence is the key to understanding the subsequent processes of interphase heat
and mass transfer, which is the ultimate goal of this work. The turbulence/interface
interaction mechanisms induced by the interfacial shear and their relationship to
interfacial drag are examined first. The near-interface/wall distributions of the shear
stress, −uw, are compared in figure 19. The comparison shows that the peak value
is smaller in the two-phase flow, indicating that there is a small drag reduction due
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to interfacial dynamics. This is due to the fact that the form drag, even if very small,
u�/uτ = 0.986, takes energy away from the flow and thus the shear decreases. This
result is consistent with the observation that drag reduction can be obtained over
adaptive and flexible walls (e.g. compliant coating) rather than rigid walls (Choi
2001). This also suggests that statistically stationary capillary waves may similarly
lead to drag reduction, even if by a smaller amount.

A more detailed view of the mechanisms by which the shear stress can be lowered
in intensity by interfacial dynamics is provided by the quadrant analysis (Kim et al.
1987; Soldati & Banerjee 1998). This analysis quantifies the possible combinations of
u and w in terms of physical flow events. Figure 20 displays the fractional contribution
of each event to the shear stress −uw for both FDI and OCH cases studied. Although
first and third quadrant events are favourable to drag reduction, their contribution
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is actually smaller than the other quadrant events. Sweep events in channel flow are
dominant close to the wall, whereas, away, from the wall, ejection events dominate.
The crossover point is located at z+ = 12. For the FDI case, the variation of quadrant
events is small. All the events seem to be enhanced at the interface but the crossover
point between the second and fourth quadrant events is still located around z+ = 12.
Above the crossover point, first and third quadrant events are larger in the FDI case
(not clearly noticeable), which explains why the drag reduction is not significant.

6.2. Turbulence characteristics

In order to study the flow structure without explicitly employing an identification
criterion other than the shear stress, the non-dimensional shear rate parameter S̃

introduced by Lam & Banerjee (1992) was employed. It is defined by

S̃ =
dU

dz

|uw|
ε

=
P
ε

(6.1)

and represents the ratio of the rate of production of turbulent kinetic energy P to
its rate of dissipation ε. This parameter is therefore intimately related to the streaky
structure of the velocity field, as discussed in § 4.2. If S̃ > 1, the shear is high enough
for streaks to form, indicating that the generation of turbulence is more dominant
than dissipation. Figure 21 shows a comparison of the time-averaged non-dimensional
shear rate parameter, S̃, obtained from the DNS of both FDI and OCH flows. In
both flow configurations, the formation of the streaks is seen to take place at the
same distance from the interface/wall, at z+ ≈ 8. Figures 22(a) and 22(b) compare
two snapshots of the streaky structure (note that, for sake of clarity, the amplitude of
the surface elevation has been amplified by a factor of 5). It can be observed that the
streaky structure in the channel flow appears to be more regular than on top of the
deformable interface. The clear alternation between high- and low-speed regions is
also more visible, while overall the streaky pattern looks less organized. However, the
streamwise elongation of the streaks does not seem to be affected by the deformation
of the interface.

The analysis of the ratio P/ε via local conditions rather than global parameters
characterizing the boundary layer, can be further detailed in terms of the same shear
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rate parameter,

S̃ =
P
ε

= S
|uw|

ε
=

S q2

ε

|uw|
q2

= S∗ |uw|
q2

, (6.2)

where S = dU/dz and q2 = 2k. With this definition the two contributions to P/ε,
namely the structure parameter |uw|/q2 and S∗ = τT /τS , the ratio of the turbulent
time scale τT = lT /uT , to the time scale characterizing the mechanical deformation,
τS = (dU/dz)−1, can be separated. In the latter definition, lT = q3/ε stands for the
turbulent length scale, and uT = q for the corresponding velocity scale. The structure
parameter is the ratio of shear to the trace of the turbulent stress tensor, representing
the degree of turbulence anisotropy. The previous discussion of the Reynolds stress
budget has revealed that the main role of interface motion is to act on the viscous and
transport mechanisms, in particular on the pressure–rate-of-strain tensor, promoting
the isotropy of near-interface turbulence. Further evidence of this result is provided
in the context of figure 23(a), where the peak value of the anisotropy parameter in
FDI appears to be lower than in the OCH case. The two time scales defining S∗
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are plotted against z+ in figure 23(b) both for the FDI and the OCH cases. It can
be observed that while τS is overall of the same magnitude, τT does not vanish near
the interface as it does near the wall, implying that the smallest scales of turbulence
remain active approaching the interface whereas they vanish as the wall is approached.
Therefore, the role of the interfacial motion also consists in accelerating the turbulent
transfer processes.

The degree of turbulence anisotropy can best be obtained by an analysis of the
anisotropy tensor, defined as

bij =
uiuj

q2
− 1

3
δij . (6.3)

In contrast to equation (6.2) which compares the magnitude of the shear stress to
that of the turbulent kinetic energy, the above relation indicates the magnitude of
each stress component to the turbulent kinetic energy. The distribution of the non-
zero bij components are compared in figure 24. Deviations in the profiles near the
interface/wall are visible only for b11 and b33; the other two components show no
such deviations. In fact, the absolute values of b11 and b33 at the wall are greater
than at the deformable interface, which, as discussed above, is expected owing to
the imposed near-interface/wall boundary conditions. This, again, confirms that the
interfacial motion yields a global dampening of the turbulent fluctuating field in the
vicinity of the interface which, in turn, explains why the near-interface turbulence
appears less anisotropic than the near-wall one.

7. Coherent structure identification
Hussain (1983) defines a coherent structure as a connected, large-scale turbulent

fluid mass with a phase-correlated vorticity throughout its spatial extent. The separa-
tion between coherent and non-coherent motion is of crucial importance to obtain a
better understanding of the transfer processes. In fact, in a turbulent boundary layer,
streamwise coherent structures have been linked to ejections and sweeps, which are
responsible for draining slow-moving fluid into the outer region and high-momentum
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Figure 25. PDF distribution of the three different identification criteria.

fluid into the wall region, respectively. These events generate the major part of the
drag and are well correlated with heat and mass transfer fluxes (Banerjee 1992). The
key issue is to define a suitable criterion that identifies boundaries, topology and
dynamics in the spatial and temporal extent of these vortices.

According to Hussain’s definition, the high vorticity modulus |ω| is a possible
candidate for vortex identification in free-shear flow. However, in the presence of
a boundary (interface/wall) this criterion fails because the mean shear creates a
residual vorticity, which is uncorrelated with the vorticity caused by the coherent
motion. Three different vortex identification criteria have therefore been employed
here. The first criterion used is the so-called Q-factor proposed by Hunt, Wray &
Moin (1988), which has already been introduced in § 4.2. Q can be thought of as the
balance between the rate-of-rotation and the rate-of-strain within the superimposed
non-coherent field. Positive values of Q indicate regions where the strength of rotation
overcomes the strain. The second criterion employed is the second largest eigenvalue
(λ2) of the tensor sikskj + rikrkj , defined by Jeong et al. (1997). With this criterion,
coherent vortices are well represented by connected regions where the local value of
λ2 becomes negative. The λ2 < 0 and Q > 0 criteria should present very similar types
of behaviour, unless the vortices are subjected to high stretching and/or compression.
The last identifier used is the streamline rotation vector, proposed by Perry & Chong
(1987). The definition of this identifier is based on the classification of complex flow
fields by the identification of their three-dimensional critical points. It is defined by

Ω = −λi

ea

|ea|
ea · (r × c)

|ea · (r × c)| , (7.1)

where λi is the imaginary part of the pair of complex eigenvalues of the velocity
gradient tensor, r is the real part of the conjugate complex eigenvectors corresponding
to the complex eigenvalues, c is the imaginary part of the conjugate complex
eigenvectors and ea is the eigenvector corresponding to the real eigenvalue.

The purpose of this section is to employ these eduction techniques to characterize
qualitatively the quasi-streamwise vortices in the turbulent flow over the freely
deformable interface, and test their sensitivity to the change in boundary conditions.
To compare the results of the different identifiers, isosurface values high enough to
capture the strong vortices were selected. For this purpose, the probability density
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Figure 26. Three-dimensional distribution of vortical structures in the FDI case identified by
using isosurfaces of (a) Q, (b) −λ2, and (c) streamline rotation vector. Values of the isosurfaces
were selected with the criterion that PDF = 0.1.

functions (PDF) of the three identifiers were determined and, to make the comparison
consistent, isosurface values of PDF = 0.1 were selected, meaning that each identifier
carries the same amount of information. The selected isosurface values are identified
in figure 25 with A for the Q-factor, B for the −λ2 criterion and C for the streamline
rotation vector, respectively. Figures 26(a), 26(b) and 26(c) display one realization
of the instantaneous distributions of the vortical structures in the FDI case by
using isosurfaces of Q, −λ2 and the streamline rotation vector, respectively. As can
be seen, the three different criteria provide virtually the same details of the quasi-
streamwise vortices developing over the interface. The comparison between several
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flow snapshots of OCH and FDI, using isosurfaces of the streamline rotation vector
(result not included here), has not revealed perceptible differences between the wall-
bounded and the air water flow. This leads to the conclusion that the turbulence
structure is not sensitive to small waveslope ripples. However, a detailed quantitative
description of the structures could be better inferred from the data using the method
of conditional averaging described in Jeong et al. (1997).

8. Conclusions
Direct numerical simulation of turbulence in a countercurrent air–water flow

configuration separated by a deformable interface has been performed. Attention
has been focused on the gas side of the interface because of its similarity to
wall-bounded flows. A systematic analysis of the near-interface turbulence has been
provided. Turbulence intensities for the flow over an interface free to deform were
found to be similar to those of wall-turbulence. The r.m.s. values of the off-diagonal
components of the fluctuating rate-of-strain tensor are found to be reduced by
the interfacial motion, implying a general dampening of the turbulent fluctuating
field near the interface. This effect is manifested by a significant reduction in the
magnitude of the off-diagonal components in the dissipation tensor. This result was
further corroborated by the increased value of the r.m.s. of the fluctuating pressure.
Analysis of the autocorrelation function of the trace of the fluctuating rate-of-strain
and rate-of-rotation tensors has shown that the interfacial deformation determines
the cross-over point where the rotation overcomes the strain and affects the flow
field more deeply into the boundary layer. The differences in the turbulent kinetic
energy and Reynolds stress budgets are localized in the dissipation, viscous diffusion
and turbulent transport terms in the direction normal to the interface. These terms
are seen to be slightly smaller than in wall turbulence, whereas the production
contributions remain unchanged. A study of the pressure–strain correlation reveals
that although the streamwise component remains the only source of energy, the
spanwise and normal components are smaller in absolute value, suggesting that the
near-interface turbulence is less anisotropic than that near the wall. This conclusion
is further confirmed by examining the anisotropy parameter and anisotropy tensor.
However, quadrant analysis applied to the shear stress does not reveal important
differences in the fractional contributions of individual events compared to wall-
turbulence. A detailed study of the non-dimensional shear rate parameter shows that
the turbulent kinetic energy at the interface does not vanish, suggesting that the
turbulent transfer mechanisms are enhanced by the interfacial motion. The streaky
structure of the flow over the deformable interface was seen to be somewhat less
organized than at the wall. Three well-known eduction techniques, namely isosurfaces
of Q, −λ2 and the streamline rotation vector, are used to identify the structure of
the turbulent flow. A simple qualitative comparison leads to the conclusion that
the quasi-streamwise vortices are not significantly modified by the presence of the
freely deformable boundary. The small differences found between near-wall and near-
interface turbulence might be due to the relatively small value of the Reynolds
number, and to the fact that the numerical algorithm is not able to handle strong
deformation of the interface. However, these findings provide the starting point for
further investigations that use large-eddy simulation coupled with level set methods,
which are capable of exploring large-Reynolds-number situations featuring wave
breaking.
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